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Quartz aggregates that formed by coalescence of quartz crystals in the magma or

in hydrothermal solution are considered. If the individuals have rhombohedral

faces in contact, there will be two special cases: parallel intergrowths and

intergrowths that agree in orientation and contact plane with Esterel twins

grown from a twinned nucleus. For all other known cases, i.e. when the relative

orientation satisfies the Japan, Sardinian, Tiflis, Zyndel-A or Samshvildo law,

both individuals have exactly coinciding short symmetry translations in only one

direction in the contact plane (monoperiodic twins). If a rhombohedral face is in

contact with a prism face, monoperiodic twins will occur if the relative

orientation satisfies the Zinnwald, Disentis or a proposed hypothetic law. The

orientation of the two lattices can be expressed by a 180� rotation about an axis

with low indices independent of c/a in the case of the Esterel, Japan and

Sardinian laws. The same is true for the Tiflis and Zyndel-A laws only if they are

redefined, and not at all in the case of the Samshvildo, Zinnwald, Disentis and

hypothetic laws. When the two individuals have rhombohedral faces in contact,

there will even be exact two-dimensional coincidence (multiplicity �) in the

contact plane and exact three-dimensional coincidence (multiplicity �) in space

if the square of the axial ratio c/a is rational. Indications are found that (despite

their high values) these multiplicities may be related to the frequency of

occurrence of intergrowths in low- and high-quartz.

1. Introduction

The stable modification of SiO2 at room temperature is

�-quartz (trigonal, space group P3221 or P3121 for right- or

left-handed crystals, respectively). At elevated temperatures,

it undergoes a reversible phase transition to �-quartz

(hexagonal, space group P6222 or P6422). The transition

temperature is 846 K at ambient pressure and is raised by 1 K

per 40 bar of pressure increase (see Fig. 1). Almost all silica

found in nature at ambient temperature and pressure is

�-quartz. Quartz originally formed as �-quartz will be referred

to as low-quartz, and quartz originally formed as �-quartz as

high-quartz. Characteristic differences between low- and high-

quartz are found in the morphology and in the occurrence of

twinning.

The prism m{10�110} and the positive and negative rhombo-

hedra r{10�111} and z{01�111} dominate the habit of �-quartz.

They consist of six faces each. In �-quartz the 12 faces of r and

z become equivalent and form the hexagonal dipyramid,

which often is the only form occurring in �-quartz. In the

following, we shall mainly consider aggregates that formed by

coalescence of quartz crystals in the magma or in hydro-

thermal solution (Friedel, 1933; Laemmlein, 1940). In the case

of high-quartz, it is then most probable that the contact plane

between two individuals belongs to the hexagonal dipyramid

in both of them.

In all aggregates in which {10�111} faces of both individuals

are in contact, the lattices of the two individuals can be related

by a rotation about the normal to (10�111). Its angle ’ may be

constrained to 0 � ’ � 180�. The frequency of occurrence of

Figure 1
The axial ratio c/a of quartz as a function of temperature and pressure.



the ’ values is far from uniform and different for high- and

low-quartz, as we shall discuss in the following.

2. The net of the quartz lattice in ð10�111Þð10�111Þ coincidence
nets

Quartz has a hexagonal lattice. Its axial ratio c/a is 1.100 for

�-quartz at ambient conditions and 1.092 for �-quartz, for

which c/a depends very little on temperature and pressure (see

Fig. 1). The net in the (10�111) plane is orthogonal centred (oc)

with axial ratio b/a given by b2 = 3a2 + 4c2. It follows that

b = 2.8a if c = 1.1a. An excellent approximation to the axial

ratio of �-quartz is c/a = (31/26)1/2
’ 1.0919, for which

b/a = (101/13)1/2.

A rotation of a net (i.e. a two-dimensional lattice) about one

of its lattice points by ’ = 180� is a symmetry operation of the

net. Rotations with 0 < ’ < 180� about a lattice point can map a

finite fraction 1/� of lattice points on lattice points of the oc

net only if (b/a)2 is rational (Fortes, 1977). If this is the case,

then the points common to the original and the rotated net

also form a two-periodic net, called the coincidence net; � is a

positive integer, called the multiplicity of the coincidence net.

The multiplicities � are equal for ’ and for 180� � ’.

3. High-quartz aggregates with contact plane
f10�111g1jjf10�111g2f10�111g1jjf10�111g2

Laemmlein (1940) describes aggregates of quartz crystals in

quartz porphyrs from the Caucasus (Samshvildo in Georgia

and Kafan in Armenia), in which the contact plane is of type

{10�111} for both individuals involved. This paper being in

Russian (with a summary in English) and published in a

journal that is not easily accessible, I shall summarize results

that are of importance in the sequel. Laemmlein observed that

weathered {10�111} surfaces with typical size 25 mm2 of quartz

crystals from quartz porphyrs often contained shining fresh

parts with typical size 1 mm2. The large weathered surfaces

and these small shining parts both had the form of isosceles

triangles with the same length ratio, showing that the shining

parts correspond to {10�111} planes of smaller crystals that had

been in contact with the large ones (Figs. 2 and 1 in Laemm-

lein, 1940). Measuring the orientation of the small triangle

relative to the large one, he determined the absolute value ’ of

the angle about the normal to the contact plane by which the

lattice of the small crystal was rotated with respect to the

lattice of the large one and obtained the results given in the

first two columns of Table 1. Column 3 gives the names of the

twin laws for which the lattices of the two twin components are

related by the rotation in column 2. According to Frondel

(1962), Esterel twins in high-quartz consist of two crystals of

approximately equal size and with contact plane usually

parallel to {10�111}. The large difference in size of adjacent

crystals observed by Laemmlein makes it very unlikely that

they developed from a twinned nucleus. This is even more

evident if we consider Verespatak twins, which according to

Frondel (1962) have contact plane {11�222}, not {10�111} as in the

aggregates observed by Laemmlein (1940). Laemmlein,

therefore, explains the formation of his aggregates by the

fusion of single crystals in their mother liquid. He also

discusses features of the shining fresh parts that give indica-

tions of the attachment mechanism, a short version of which is

given in the English summary of his paper.

Laemmlein (1940) proposed the name ‘Samshvildo twins’

for his aggregates with ’ = 39.3�; I shall show below that this

relative orientation of lattices does not correspond to a

genuine twin law. Notice that the overwhelming majority of

imprints (576 of the 586 whose orientation could be deter-

mined) have ’ = 0 or 140.7� or their supplements (180� 0)�,

(180� 140.7)�. Laemmlein (1940) also mentions the Sar-

dinian, Zyndel-A and Tiflis laws but does not give details of

their occurrence because the corresponding imprints were not

clear. The rare occurrence of ’ values other than 0, 180, 140.7

and 39.3� and the vagueness of the corresponding imprints

show that the forces holding the two {10�111} surfaces together

are weak in these cases. An example of a high-quartz aggre-

gate with contact plane as given above and relative orientation

of the two individuals corresponding to the Sardinian law has

been described by Drugman (1922).

The lowest possible values of the multiplicity � for the oc

net with b/a = (101/13)1/2 are given in Table 2.

For high-quartz, it follows from Tables 1 and 2 that (10�111)

intergrowths with � = 1 occur most frequently, those with � = 57

are still quite frequent, whereas those with higher values of �
are very rare. The last column in Table 2 gives the three-

dimensional coincidence index �. This column shows that for

one of the angles ’ there is coincidence in every lattice plane

(10�111), whereas for its supplement, 180� � ’, coincidence

occurs only in one out of 101 lattice planes (10�111). The

aggregates in Table 2 with � = � and � > 1 may be considered

as plesiotwins according to their definition by Nespolo et al.

(1999); an alternative interpretation as monoperiodic twins

will be discussed below.

It should be noticed that Esterel and Verespatak (Japan)

twins occur in high-quartz often as growth twins, i.e. twins

grown from a twinned nucleus (see Frondel, 1962). The usual

contact plane is then (10�111) for Esterel twins but (11�222) for

Verespatak (Japan) twins. Remember that only the first

contact plane is considered by Laemmlein (1940).

The relative orientation of the lattices of the two individuals

can be described by a mirror reflection in {101} or by a 180�
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Table 1
Results of Laemmlein (1940) concerning high-quartz aggregates with
contact plane {10�111}1||{10�111}2.

Number
of imprints
(total 672)

Rotation angle ’ (�)
about the normal
to {10�111}

Name of corresponding
twin law

192 0 [Parallel intergrowth]
216 180 Esterel
131 140.7 Verespatak (=Japan)

37 39.3 ‘Samshvildo’
10 Others Sardinian, Zyndel-A, Tiflis, . . .
86 Impossible to

determine



rotation about h212i in an Esterel (Reichenstein–Grieserntal)

twin, by a mirror reflection in {102} or by a 180� rotation about

h211i in a Sardinian twin, and by a mirror reflection in {112} or

by a 180� rotation about h111i in a Verespatak (Japan) twin for

�- (and �-) quartz, i.e. independent of the axial ratio c/a (see

e.g. Frondel, 1962). Laemmlein (1940) defined the Samshvildo

orientation by having its rotation angle ’ equal to 180� minus

the rotation angle for the Verespatak (Japan) orientation. The

relative orientation of the lattices of the two individuals can

then be described by a mirror reflection in (70031031) or by a

180� rotation about [57044013] if c/a = (31/26)1/2 (�-quartz) and

by a mirror reflection in (27101210121) or by a 180� rotation

about [2210171050] if c/a = 1.1 (�-quartz). This shows that

neither a mirror reflection in a plane with low indices nor a

180� rotation about an axis with low indices can describe the

Samshvildo orientation, which, therefore, does not correspond

to a genuine twin orientation. The situation is similar if the

angle ’ corresponding to the Sardinian, Tiflis or Zyndel-A

orientation is replaced by its supplement, 180��’.

4. Low-quartz aggregates with contact plane
f10�111g1jjf10�111g2f10�111g1jjf10�111g2

Aggregates with contact plane {10�111}1||{10�111}2 occur not only

in high-quartz but also in low-quartz, as shown in the review

by Frondel (1962). Is the frequency of the relative orientation

of the two components of such aggregates different for low-

and high-quartz?

In his paper ‘Über Quarzzwillinge mit nichtparallelen

Hauptaxen’ (On quartz twins with non-parallel principal

axes), Zyndel (1913) describes two laws with contact plane

(10�111) for both individuals: Reichenstein–Grieserntal

(= Esterel) and Sardinian and postulates two others, examples

of which have been found in the meantime in low-quartz and

are now known as the Tiflis and Zyndel-A law, respectively

(see Frondel, 1962). For the Sardinian law, Zyndel refers to the

only example known to him, described by Sella (1858), who

examined an example of unknown origin, of which it is not

clear whether it was low- or high-quartz (cf. Drugman, 1922

and Frondel, 1962). I am not aware of an aggregate with

contact plane (10�111) in both individuals, whose orientation

corresponds to the Sardinian law and which is clearly low-

quartz.

The lowest possible values of the multiplicity � for the oc

net with b/a = 2.8 are given in Table 3. The � values in Table 3

are roughly the same as those in Table 2 for the Tiflis orien-

tation, two times smaller for the Zyndel-A orientation, but

four times larger for the Samshvildo, Japan and Sardinian

orientations. This may suggest that aggregates with contact

plane (10�111) occur in low-quartz more frequently in Zyndel-A

or Tiflis orientation than in Japan, Samshvildo or Sardinian

orientation. The experimental situation is less clear than in the

case of high-quartz: I am not aware of a recent survey of

aggregates with contact plane (10�111) in low-quartz; the axial

ratio depends much more strongly on temperature and pres-

sure for �-quartz than for �-quartz. Fig. 1 gives the depen-

dence of c/a on temperature and pressure according to the

results of Girsperger et al. (2002).

According to the definitions given by Zyndel (1913) and

reproduced by Frondel (1962), the planes (10�111) of both

individuals are parallel in Tiflis twins and in Zyndel-A

twins; in addition, [010]1||[10�11]2 and [�11�111]1||[010]2 for Tiflis;

[�1101]1||[010]2 and [010]1||[11�11]2 for Zyndel-A. This is possible

only for c/a = (5/4)1/2, in which case ’ = 109.47� for Tiflis and

180� 109.47� = 70.53� for Zyndel-A. The situation for c/a =

(5/4)1/2 = 1.118, which clearly lies outside the experimental

range for quartz, is shown in Fig. 2.

For c/a = (5/4)1/2, the relative orientation of the lattices of

two individuals can be described by a 180� rotation about [416]

for a Tiflis twin and by a 180� rotation about [716] for a
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Table 2
The lowest possible multiplicity values � of the coincidence net in the
contact plane for b/a = (101/13)1/2.

� ’ (�) Name of the orientation

Indices of the
corresponding 180�

rotation axis �

1 0 [Parallel intergrowth] �
180 Esterel [212] 101�

57 39.47 Samshvildo [57044013] 101�
140.53 Verespatak (=Japan) [111] �

109 85.79 Sardinian [211] �
94.21 – [70039039] 101�

153 71.32 – [127075052] 101�
108.68 Tiflis [322] �

213 58.28 – [321] �
121.72 – [83065065] 101�

309 69.74 Zyndel-A [532] �
110.26 – [15301040104] 101�

Table 3
The lowest possible multiplicity values � of the coincidence net in the
contact plane for b/a = 2.8.

� ’ (�) Name of the orientation

Indices of the
corresponding 180�

rotation axis �

1 0 [Parallel intergrowth] �
180 Reichenstein-Grieserntal

(= Esterel)
[212] 196�

140 90 [19010010] 14�
148 71.08 – [123073050] 98�

108.92 Tiflis [322] 2�
149 69.98 Zyndel-A [532] 4�

110.02 – [37025025] 49�
175 53.13

126.87
203 43.60

136.40
221 39.31 Samshvildo [2210171050] 196�

140.69 Japan [111] �
265
287
325
364
421 86.05 Sardinian [211] �

93.95 – [27101500150] 196�



Zyndel-A twin. These indices, being reasonably low, will be

retained for axial ratios in the experimental range of quartz. It

follows then that coincidence is retained along the directions

u + v in Fig. 2, whereas the coincidences along u and along v

are no longer exact, and the sum of the ’ values for Tiflis and

for Zyndel-A differs from 180� if c/a 6¼ (5/4)1/2. Exact co-

incidence in the contact plane is then one-dimensional, except

for rational values of (c/a)2, for which the two-dimensional

coincidence density 1/� varies widely with (c/a)2, as shown in

Table 4.

Also, if the two individuals meeting in a common (10�111)

plane have a relative orientation given by the Japan or

Sardinian law, it follows from their usual definition that there

is one-dimensional coincidence for any value of c/a and two-

dimensional coincidence only for rational values of (c/a)2. The

situation is illustrated in Fig. 3 for c/a = (6/5)1/2.

5. Aggregates with contact plane f10�110g1jjf10�111g2f10�110g1jjf10�111g2

The best known example of this type is the Zinnwald twin, for

which [010]1||[010]2 (Zyndel, 1913; Drugman, 1927, 1930;

Friedel, 1933). In this case, one obviously has one-dimensional

coincidence along [010] for any value of c/a. The area of

primitive cells is A1 = ac in {10�110} and A2 = a (3
4a

2 + c2)1/2 in

{10�111}.

If c/a = 1.1, then A1 = 1.1a2, A2 = 1.4a2, and one even has

two-dimensional coincidence in the contact plane with �1 = 28

and �2 = 22 and three-dimensional coincidence in space with

� = 308 (see Grimmer & Kunze, 2004). The coincidence cell in

the contact plane is of type op with side lengths a and 28c; the

three-dimensional coincidence cell is of type oF.

Zyndel (1913) discusses several intergrowths related to

Zinnwald by an additional rotation of individual two by an

angle � about the normal to the contact plane. Before

discussing two of them from the coincidence point of view, we

point out that it follows for c/a = 1.1 from the values of A1 and

A2 that �1 = 14m, �2 = 11m, � = 154mn, where m and n are

integers. [In our examples, n = 1 and m = 2 (Zinnwald), 5

(Seedorf II), 13 (Disentis) or 17 (hypothetic).]

Seedorf II is defined by [001]1||[010]2, i.e. it is obtained by a

rotation with � = 90� for any value of c/a. In general, there is

not even one-dimensional coincidence in the contact plane;

however, if c/a = 1.1, we have two-dimensional coincidence in

the contact plane with �1 = 70 and �2 = 55 and three-dimen-

sional coincidence in space with � = 770; the coincidence cell

in the contact plane is of type oc with side lengths 10a and 14c.

If c/a = 1.1, the two lattices are not related by a 180� rotation

and, therefore, not by a mirror reflection.

Disentis is defined by [01�11]1||[11�11]2. These two vectors lie in

the contact plane and have the same length for any value of

c/a, so that we have at least one-dimensional coincidence in

the contact plane. If c/a = 1.1, then sin � = 5/13, � = 22.62� and

one even has two-dimensional coincidence in the contact

plane with �1 = 182 and �2 = 143 and three-dimensional

coincidence in space with � = 2002.

There is a similar hypothetic possibility, not discussed by

Zyndel, which is defined by [01�11]1||[10�11]2. Also these two

vectors lie in the contact plane and have the same length for

any value of c/a, so that we have at least one-dimensional

coincidence. If c/a = 1.1, then sin � = 15/17, � = 61.93� and one

even has two-dimensional coincidence in the contact plane

with �1 = 238 and �2 = 187 and three-dimensional coincidence

in space with � = 2618.
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Figure 2
The nets of lattice points in the contact plane for Tiflis and Zyndel-A
orientations and an axial ratio c/a = (5/4)1/2. Every sixth point of the red
nets and every sixth point of the blue nets coincide, i.e. � = 6.

Table 4
The multiplicities � for a number of orientations and values of the axial
ratio c/a.

(c/a)2

Relative
orientation 31/26 = 1.1923 6/5 = 1.2 121/100 = 1.21 5/4 = 1.25

Esterel 1 1 1 1
Tiflis 153 59 148 6
Zyndel-A 309 119 149 6
Japan/Samshvildo 57 11 221 9
Sardinian 109 7 421 17

Figure 3
The nets of lattice points in the contact plane (10�111) for intergrowths in
Japan and Sardinian orientations and an axial ratio c/a = (6/5)1/2.



The contact planes in Disentis orientation and in our

hypothetic one are shown in Fig. 4 for c/a = 1.1.

Zyndel (1913) mentions the Zinnwald, Seedorf II and

Disentis orientations in connection with low-quartz. Exact

three-dimensional coincidence occurs for c/a = 1.1, but not for

(c/a)2 = 31/26 or 6/5. As stated above, the Zinnwald, Disentis

and our hypothetic laws lead to one-dimensional coincidence

for any value of c/a. We conclude that these laws may occur

also in high-quartz; the dense coincidence along a row being of

prime importance. In fact, the Zinnwald orientation has been

found also in high-quartz (Drugman, 1927, 1930).

6. Discussion

Considering aggregates of two quartz crystals having as

contact plane either {10�111}1 or {10�110}1 parallel to (10�111)2, we

discussed a number of possible orientation relations of the

crystal lattices of the two individuals, corresponding to the

Japan, Samshvildo, Sardinian, Tiflis and Zyndel-A laws in the

first case, and to the Zinnwald, Disentis and hypothetic laws in

the second. In all these cases and for any value of c/a in the

experimental range of quartz, there is a row in the contact

plane that, in both individuals, has small indices and the same

small period. This period is given in Table 5.

Specification of a row in individual 1 that is parallel to a row

in individual 2 does not uniquely determine the relative

orientation of the lattices of the two individuals. The orien-

tation becomes unique only when also the indices of the

contact plane are specified in both individuals. Twins in which

the lattices of the two components have coincident translation

vectors in only one direction have been called monoperiodic

(see Friedel, 1933; Hahn & Klapper, 2003; Nespolo & Ferraris,

2004).

Taking into account that, in most cases, two individuals of

different size are in contact, the small one occupying only part

of the contact plane of the large one, it is plausible that such

aggregates formed when the two individuals had already

reached macroscopic size and met in the magma or hydro-

thermal solution. Such a mechanism has been proposed by

Drugman (1930) and by Friedel (1933) for the Zinnwald case

and by Laemmlein (1930, 1940) for the cases considered in

x3. A recent review of the oriented attachment mechanism

is due to Nespolo & Ferraris (2004). This review summarizes

also the experiment of Schaskolsky & Schubnikow (1933),

who artificially produced intergrowths of potassium alum

[KAl(SO4)2(H2O)12] in aqueous solution in order to test the

oriented attachment mechanism suggested by Laemmlein

(1930). They grew octahedral alum crystals of size 20–30 mm

and let octahedral- and cube-shaped crystals of size �0.5 mm

fall onto them. Strong shaking separated most small crystals

from the large ones. Measuring the orientation of those that

remained stuck, they found that some orientations occurred

much more frequently than at random. For small octahedral

crystals on a large octahedral one, the orientations with � = 1,

i.e. parallel orientation (� = 1) and spinel orientation (� = 3),

occurred preferentially, similarly to parallel and Esterel

orientations in high-quartz (x3). For small cube-shaped crys-

tals on the large octahedral one, the orientations with parallel

h110i directions in the two planes in contact occurred prefer-

entially; in this case, which resembles Zinnwald twins in quartz

(x5), the coincidence is one-dimensional.

For rational values of (c/a)2, the coincidence in the contact

plane {10�111}1||{10�111}2 becomes two-dimensional, although

with a very large cell except in the cases illustrated in Fig. 3.

We showed that, nevertheless, there are indications that the

frequency of occurrence of aggregates with contact plane

{10�111}1||{10�111}2 in high- and low-quartz, respectively, is

correlated with the values of � and �, which give the inverse

density of coincidence sites in the contact plane and in space,

respectively.

The situation is different for the Esterel orientation: also

Esterel twins grown from a twinned nucleus have contact

planes of type {10�111} in both individuals. All the nodes of the

net in the contact plane are in coincidence for any value of c/a.

Aggregates in Esterel orientation with contact plane

{10�111}1||{10�111}2 may have originated from twinned nuclei or by

aggregation of preformed crystals, as was pointed out already

by Friedel (1933).

There remains the Seedorf II law, observed in low-quartz

(Zyndel, 1913, Frondel, 1962). In this case, there is no dense

coincidence along a row in the contact plane. For c/a = 1.1, the

values of �1 and �2 are 2.5 times larger than the lowest possible

ones for the contact plane {10�110}1||{10�111}2. To our knowledge,

the Seedorf II orientation has been described only once, so

that its occurrence with more than random probability has not

been established.
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Figure 4
The nets of lattice points in the contact plane (10�111) for an axial ratio
c/a = 1.1 for intergrowths in Disentis and our hypothetic orientation.

Table 5
The period of one-dimensional coincidence in the contact plane.

(10�111)2 || Orientation Square of period Period if c2/a2 = 6/5

{10�111}1 Japan a2 + c2 1.48a
Sardinian 3a2 + c2 2.05a
Tiflis 7a2 + 4c2 3.44a
Zyndel-A 19a2 + 4c2 4.88a

{10�110}1 Zinnwald a2 a
Disentis a2 + c2 1.48a
Hypothetic a2 + c2 1.48a



7. Conclusions

In intergrowths of high-quartz with contact plane (10�111), the

frequency of occurrence of the angle ’ of the rotation about

the normal to (10�111) has pronounced maxima at those values

that correspond to the largest possible densities of coincidence

sites in the contact plane. The angles ’ and 180� � ’ give rise

to the same density 1/� in the contact plane but to different

three-dimensional coincidence densities 1/�. The orientation

with the lower value of � appears more frequently and

corresponds to an orientation observed in twins growing from

a twinned nucleus, the other does not correspond to such a

twin, e.g. Japan versus Samshvildo. Similarly, the Tiflis and

Zyndel-A orientations are not supplementary, in contrast to

the idea of Zyndel (1913).

Based on the results of Laemmlein (1940) (and Zyndel,

1913), we showed that monoperiodic twins in quartz are rather

common in aggregates formed by coalescence of preformed

quartz crystals in the magma or in hydrothermal solution and

are by no means restricted to Zinnwald-type orientation.

Stimulating discussions with K. Kunze and M. Nespolo are

gratefully acknowledged.
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Frondel, C. (1962). The System of Mineralogy, Vol. III. New York:

Wiley.
Girsperger, S., Raz, U. & Thompson, A. B. (2002). ETH E-Collection,

http://e-collection.ethbib.ethz.ch/show?type=bericht&nr=184.
Grimmer, H. & Kunze, K. (2004). Acta Cryst. A60, 220–232.
Hahn, Th. & Klapper, H. (2003). International Tables for Crystal-

lography, Vol. D, Physical Properties of Crystals, edited by
A. Authier, ch. 3.3, pp. 393–448. Dordrecht: Kluwer Academic
Publishers.

Laemmlein, G. G. (1930). Dokl. Akad. Nauk SSSR, pp. 709–714. (In
Russian.)

Laemmlein, G. G. (1940). Trav. Lab. Cristallogr. Acad. Sci. URSS, No.
2, pp. 123–148. (In Russian.)

Nespolo, M. & Ferraris, G. (2004). Eur. J. Mineral. 16, 401–406.
Nespolo, M., Ferraris, G., Takeda, H. & Takéuchi, Y. (1999). Z.
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